a. Quantitative Ability

Sum of a series

Tagged: , ,

Viewing 2 posts - 1 through 2 (of 2 total)
  • Author
    Posts
  • #2837
    administration
    Keymaster

      Q. 1/(1*2*3) +1/(3*4*5) + 1/(5*6*7) + ……..

      Find the  sum ?

      #2974
      Wonder Boy
      Participant

        To solve  this  type of problem, where reciprocals are involved we will use the concept of partial fraction.

        so here we can see each term is of the form

        1/[n.(n+1).(n+2)]

        Let 1/[n.(n+1).(n+2)]  =  A/n + B/(n+1) + C/(n+2)

        –> 1/[n.(n+1).(n+2)] = [ A(n+1)(n+2) + B(n)(n+2) +C(n)(n+1)]/[n.(n+1).(n+2)] 

        –> 1 = [ A(n+1)(n+2) + B(n)(n+2) +C(n)(n+1)]

        putting n=-1, we get

        B = -1

        putting n = -2 , we get

        C = 1/2

        putting n= 0, we get

        A= 1/2

        So , 1/[n.(n+1).(n+2)] = 1/2n1/(n+1) + 1/2(n+2)

        1/(1*2*3) +1/(3*4*5) + 1/(5*6*7) + …….. = 1/2.1-1/2+1/2.3   +  1/2.3-1/4+1/2.5  +  1/2.5-1/6+1/2.7 +……

        = 1/2(1+1/3 + 1/5+1/7 + …..) – (1/2 +1/4 +1/6 +…… ) + 1/2(1/3 +1/5 +1/7 +…..)

        = 1/2(1+1/3 + 1/5+1/7 + …..) – (1/2 +1/4 +1/6 +…… ) -1/2

        = (1-1/2+1/3-1/4+ ….)  -1/2

        = 0.69314 -0.5 = 0.19314

         

         

         

      Viewing 2 posts - 1 through 2 (of 2 total)
      • You must be logged in to reply to this topic.